Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Exp Bot ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700102

RESUMEN

Optimizing photosynthesis is considered an important strategy for improving crop yields to ensure food security. To evaluate the potential of using photosynthesis-related parameters in crop breeding programs, we measured chlorophyll fluorescence along with growth-related and morphological traits of 23 barley inbreds across different developmental stages in field conditions. The photosynthesis-related parameters were highly variable, changing with light intensity and developmental progression of plants. Yet, the variations in photosystem II (PSII) quantum yield observed among the inbreds in the field largely reflected the variations in CO2 assimilation properties in controlled climate chamber conditions, confirming that the chlorophyll fluorescence-based technique can provide proxy parameters of photosynthesis to explore genetic variations under field conditions. Heritability (H2) of the photosynthesis-related parameters in the field ranged from 0.16 for the quantum yield of non-photochemical quenching to 0.78 for the fraction of open PSII center. Two parameters, the maximum PSII efficiency in light-adapted state (H2 0.58) and the total non-photochemical quenching (H2 0.53), showed significant positive and negative correlations, respectively, with yield-related traits (dry weight per plant and net straw weight) in the barley inbreds. These results indicate the possibility of improving crop yield through optimizing photosynthetic light use efficiency by conventional breeding programs.

2.
Environ Pollut ; 350: 123948, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38614423

RESUMEN

The aim of this study is to investigate the adverse effects of benzophenones (BPs) on the intestinal tract of mice and the potential mechanism. F1-generation ICR mice were exposed to BPs (benzophenone-1, benzophenone-2, and benzophenone-3) by breastfeeding from birth until weaning, and by drinking water after weaning until maturity. The offspring mice were executed on postnatal day 56, then their distal colons were sampled. AB-PAS staining, HE staining, immunofluorescence, Transmission Electron Microscope, immunohistochemistry, Western Blot and RT-qPCR were used to study the effects of BPs exposure on the colonic tissues of offspring mice. The results showed that colonic microvilli appeared significantly deficient in the high-dose group, and the expression of tight junction markers Zo-1 and Occludin was significantly down-regulated and the number of goblet cells and secretions were reduced in all dose groups, and the expression of secretory cell markers MUC2 and KI67 were decreased, as well as the expression of intestinal stem cell markers Lgr5 and Bmi1, suggesting that BPs exposure caused disruption of intestinal barrier and imbalance in the composition of the intestinal stem cell pool. Besides, the expression of cellular inflammatory factors such as macrophage marker F4/80 and tumor necrosis factor TNF-α was elevated in the colonic tissues of all dose groups, and the inflammatory infiltration was observed, which means the exposure of BPs caused inflammatory effects in the intestinal tract of F1-generation mice. In addition, the contents of Notch/Wnt signaling pathway-related genes, such as Dll-4, Notch1, Hes1, Ctnnb1and Sfrp2 were significantly decreased in each high-dose group (P < 0.05), suggesting that BPs may inhibit the regulation of Notch/Wnt signaling pathway. In conclusion, exposure to BPs was able to imbalance colonic homeostasis, disrupt the intestinal barrier, and trigger inflammation in the offspring mice, which might be realized through interfering with the Notch/Wnt signaling pathway.

3.
J Control Release ; 366: 328-341, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38168561

RESUMEN

Activated platelets promote tumor progression and metastasis through active interactions with cancer cells, especially in promoting epithelial-mesenchymal transition (EMT) of tumor cells and shedding tumor cells into the blood. Blocking platelet-tumor cell interactions can be a potential strategy to inhibit tumor metastasis. Platelet activation requires energy produced from aerobic glycolysis. Based on this, we propose a platelet suppression strategy by reprogramming glucose metabolism of platelets, which has an advantage over conventional antiplatelet treatment that has a risk of serious hemorrhage. We develop a biomimetic delivery system using platelet membrane-hybridized liposomes (PM-Lipo) for codelivery of quercetin and shikonin to simultaneously inhibit lactate transporter MCT-4 and a glycolytic enzyme PKM2 for achieving metabolic reprogramming of platelets and suppressing platelet activation. Notably, PM-Lipo can also inhibit glycolysis in cancer cells, which actually takes "two-birds-one-stone" action. Consequently, the platelet-tumor cell interactions are inhibited. Moreover, PM-Lipo can bind with circulating tumor cells and reduce their seeding in the premetastatic microenvironment. The in vivo studies further demonstrated that PM-Lipo can effectively suppress primary tumor growth and reduce lung metastasis without affecting inherited functions of platelets. Reprogramming glycolysis of platelets can remodel the tumor immune microenvironment, including suppression of Treg and stimulation of CTLs.


Asunto(s)
Liposomas , Neoplasias Pulmonares , Humanos , Biomimética , Plaquetas , Glucólisis , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/prevención & control , Microambiente Tumoral
4.
Toxics ; 11(12)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38133353

RESUMEN

(1) Objective: Rare earth neodymium oxide (Nd2O3) is refined and used extensively around the world, and the occupational and environmental safety of rare piles of the earth has attracted considerable attention. Nd2O3 enters the human body through the respiratory system, reaches various organs through blood circulation, and accumulates to produce toxic effects. At present, little is known about the reproductive toxicity of Nd2O3. Non-coding RNAs participate in a variety of physiological activities and are very important for spermatogenesis. However, it is unknown whether they are involved in Nd2O3-induced reproductive toxicity. Therefore, we conducted a pathological analysis, sperm quality testing, and RNA-seq on the testicular tissue of mice exposed to Nd2O3 to find the key genes and regulatory pathways of male reproductive damage and explore the early biomarkers and mechanisms of reproductive damage caused by Nd2O3. (2) Methods: After exposure of mice to Nd2O3, we carried out a pathological analysis and RNA-seq analysis for miRNAs/lncRNAs/circRNAs/mRNAs on the testicular tissue of mice, and the total RNAs were used to investigate miRNA/lncRNA/circRNA/mRNA expression profiles by strand-specific RNA sequencing at the transcriptome level to help uncover RNA-related mechanisms in Nd2O3-induced toxicity. (3) Results: Nd2O3 damaged testis and sperm morphology, significantly decreased the number of sperm, and deformed the sperm head and tail. RNA-seq analysis showed that the expression level of mRNA/miRNA/circRNA/lncRNA in the testicular tissue of mice exposed to Nd2O3 is abnormal. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that the functional enrichment of differentially expressed genes (DEGs) and their target genes was closely related to the related pathway of spermatogenesis. Furthermore, some miRNAs/lncRNAs/circRNAs that were greatly upregulated or inducibly expressed, implying their potential value as candidate markers for Nd2O3-induced reproductive toxicity, help us to further investigate the mechanisms of key genes, key signaling pathways, and inter-gene regulation for Nd2O3-induced reproductive toxicity. (4) Conclusions: This study provides the first database of a Nd2O3-induced transcriptome. This information is useful for the development of biomarkers of Nd2O3-induced reproductive injury and promotes understanding of the reproductive toxicity mechanism of Nd2O3.

5.
Toxics ; 11(12)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38133396

RESUMEN

This study was aimed at investigating the pathogenesis of chronic obstructive pulmonary disease (COPD) caused by smoking-based on bioinformatics analysis and in vitro experimental evidence. The GEO, GEO2R, TargetScan, miRDB, miRWalk, DAVID, and STRING databases were used for bioinformatics analysis. The mRNA expression and the protein levels were determined by real-time PCR and ELISA. After taking the intersection of the diversified results of the databases, four differentially expressed miRNAs (hsa-miR-146a, hsa-miR-708, hsa-miR-150, and hsa-miR-454) were screened out. Subsequently, a total of 57 target genes of the selected miRNAs were obtained. The results of DAVID analysis showed that the selected miRNAs participated in COPD pathogenesis through long-term potentiation, the TGF-ß signaling pathway, the PI3K-Akt signaling pathway, etc. The results of STRING prediction showed that TP53, EP300, and MAPK1 were the key nodes of the PPI network. The results of the confirmatory experiment showed that, compared with the control group, the mRNA expression of ZEB1, MAPK1, EP300, and SP1 were up-regulated, while the expression of MYB was down-regulated and the protein levels of ZEB1, MAPK1, and EP300 were increased. Taken together, miRNAs (hsa-miR-146a, hsa-miR-708, hsa-miR-150, and hsa-miR-454) and their regulated target genes and downstream protein molecules (ZEB1, EP300, and MAPK1) may be closely related to the pathological process of COPD.

6.
Front Microbiol ; 14: 1235708, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37779714

RESUMEN

Drought is the most prevalent environmental stress in crop production, posing a significant danger to food security. Microorganisms in the crop root zone affect crop growth and development, enhance effective nutrient use, and resist adversity hazards. To analyze the changes and functional differences of root space microbial (endosphere-rhizosphere-bulk soil) communities in spring wheat under drought stress. In this study, the root, rhizosphere, and bulk soil of the drought-tolerant group (DTG, three varieties) and drought-sensitive group (DSG, three varieties) were collected. The control (CK, 25-28%), moderate drought (MD, 15-18%), and severe drought (SD, 9-12%) were analyzed by high-throughput sequencing and bioinformatics. The results showed significant differences in the diversity of Bacteria and Fungi in the root space of spring wheat under drought stress (P < 0.05), with the drought-tolerant group exhibiting higher microbial diversity. The microbial community change in spring wheat root space was mainly determined by the niche differentiation of endosphere, rhizosphere, and bulk soil and declined from endosphere to bulk soil due to drought. The antagonism between microbial and root-space species increased, and the community's complexity and stability deteriorated. Enriching drought-resistant preference groups like Actinobaciota, Variovorax, Streptomyces, and Conocybe altered the structure and function of the microbial community in the root space of spring wheat. Spring wheat's root space Bacteria and Fungi have different strategies to respond to drought.

7.
Toxicol Sci ; 197(1): 27-37, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-37831906

RESUMEN

Some rare earth elements are occupational and environmental toxicants and can cause organ and systemic damage; therefore, they have attracted global attention. Neodymium oxide (Nd2O3) is a rare earth element that is refined and significantly utilized in China. The long noncoding RNA (lncRNA) H19 is encoded by the H19/IGF2 imprinted gene cluster located on human chromosome 11p15.5. H19 has become a research focus due to its ectopic expression leading to the promotion of fibrosis. However, the mechanisms by which it causes pulmonary fibrosis are elusive. This investigation indicates that biologically active Nd2O3 increases H19, SNIP1, and c-myc, decreases miR-29a-3p, accelerates macrophage M2 polarization, and causes pulmonary fibrosis in mice lung tissues. In macrophage-differentiated THP-1 cells, Nd2O3 (25 µg/ml) enhanced H19, SNIP1, and c-myc, reduced miR-29a-3p, accelerated macrophages M2 polarization, and stimulated fibrogenic cytokine (TGF-ß1) secretion. Furthermore, the coculturing of Nd2O3-treated macrophage-differentiated THP-1 cells. And human embryonic lung fibroblast cells activated lung fibroblast, which increases the levels of collagen I, α-SMA, p-Smad2/3, and Smad4, whereas H19 knockdown or miR-29a-3p upregulation in macrophages had opposite effects. Moreover, it was revealed that H19/miR-29a-3p/SNIP1/c-myc regulatory axis is involved in pulmonary fibrosis induced by Nd2O3. Therefore, this study provides new molecular insights into the mechanism of pulmonary fibrosis by Nd2O3.


Asunto(s)
MicroARNs , Fibrosis Pulmonar , ARN Largo no Codificante , Humanos , Animales , Ratones , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Óxidos , Proteínas de Unión al ARN
8.
Front Microbiol ; 14: 1167293, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37637133

RESUMEN

Crop straw contains huge amounts of exploitable energy, and efficient biomass degradation measures have attracted worldwide attention. Mining strains with high yields of cellulose-degrading enzymes is of great significance for developing clean energy and industrial production of related enzymes. In this study, we reported a high-quality genome sequence of Bacillus velezensis SSF6 strain using high-throughput sequencing technology (Illumina PE150 and PacBio) and assessed its lignocellulose degradation potential. The results demonstrated that the genome of B. velezensis SSF6 was 3.89 Mb and contained 4,015 genes, of which 2,972, 3,831 and 158 genes were annotated in the COGs (Clusters of Orthologous Groups), KEGG (Kyoto Encyclopedia of Genes and Genomes) and CAZyme (Carbohydrate-Active enZymes) databases, respectively, and contained a large number of genes related to carbohydrate metabolism. Furthermore, B. velezensis SSF6 has a high cellulose degradation capacity, with a filter paper assay (FPA) and an exoglucanase activity of 64.48 ± 0.28 and 78.59 ± 0.42 U/mL, respectively. Comparative genomic analysis depicted that B. velezensis SSF6 was richer in carbohydrate hydrolase gene. In conclusion, the cellulose-degrading ability of B. velezensis SSF6 was revealed by genome sequencing and the determination of cellulase activity, which laid a foundation for further cellulose degradation and bioconversion.

9.
J Control Release ; 358: 706-717, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37207796

RESUMEN

Lactate is abundant in cancer tissues due to active glycolysis (aka Warburg effect) and mediates crosstalk between tumor cells and the immune microenvironment (TIME) to promote the progression of breast cancer. Quercetin (QU) is a potent monocarboxylate transporters (MCT) inhibitor, which can reduce lactate production and secretion of tumor cells. Doxorubicin (DOX) can induce immunogenic cell death (ICD), which promotes tumor-specific immune activation. Thus, we propose a combination therapy of QU&DOX to inhibit lactate metabolism and stimulate anti-tumor immunity. To enhance tumor-targeting efficiency, we developed a legumain-activatable liposome system (KC26-Lipo) with modification of KC26 peptide for co-delivery of QU&DOX for modulation of tumor metabolism and TIME in breast cancer. The KC26 peptide is a legumain-responsive, hairpin-structured cell-penetrating peptide (polyarginine) derivative. Legumain is a protease overexpressed in breast tumors, allowing selective activation of the KC26-Lipo to subsequently facilitate intra-tumoral and intracellular penetration. The KC26-Lipo effectively inhibited 4T1 breast cancer tumor growth through chemotherapy and anti-tumor immunity. Besides, inhibition of lactate metabolism suppressed the HIF-1α/VEGF pathway and angiogenesis and repolarized the tumor-associated macrophages (TAM). This work provides a promising breast cancer therapy strategy by regulating lactate metabolism and TIME.


Asunto(s)
Neoplasias de la Mama , Neoplasias Mamarias Animales , Animales , Humanos , Femenino , Péptido Hidrolasas , Doxorrubicina , Neoplasias de la Mama/tratamiento farmacológico , Liposomas/uso terapéutico , Lactatos , Línea Celular Tumoral , Microambiente Tumoral
10.
Cytokine ; 166: 156191, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37002970

RESUMEN

OBJECTIVE: This study was aimed to screen and identify miRNAs that could regulate human CTGF gene and downstream cascade reaction Rac1/MLK3/JNK/AP-1/Collagen I by bioinformatics and experimental means. METHODS: TargetScan and Tarbase were used to predict miRNAs that may have regulatory effects on human CTGF gene. The dual-luciferase reporter gene assay was employed to verify the results obtained in bioinformatics. Human alveolar basal epithelial A549 cells were exposed to silica (SiO2) culture medium for 24 h to establish an in vitro model of pulmonary fibrosis, and bleomycin (BLM) of 100 ng/mL was used as a positive control. The miRNA and mRNA expression levels were determined by RT-qPCR, and the protein levels were measured by western blot in hsa-miR-379-3p overexpression group or not. RESULTS: A total of 9 differentially expressed miRNAs that might regulate the human CTGF gene were predicted. Hsa-miR-379-3p and hsa-miR-411-3p were selected for the subsequent experiments. The results of the dual-luciferase reporter assay showed that hsa-miR-379-3p could bind to CTGF, but hsa-miR-411-3p could not. Compared with the control group, SiO2 exposure (25 and 50 µg/mL) could significantly reduce the expression level of hsa-miR-379-3p in A549 cells. SiO2 exposure (50 µg/mL) could significantly increase the mRNA expression levels of CTGF, Collagen I, Rac1, MLK3, JNK, AP1, and VIM in A549 cells, while CDH1 level was significantly decreased. Compared with SiO2 + NC group, the mRNA expression levels of CTGF, Collagen I, Rac1, MLK3, JNK, AP1, and VIM were significantly decreased, and CDH1 level was significantly higher when hsa-miR-379-3p was overexpressed. At the same time, overexpression of hsa-miR-379-3p improved the protein levels of CTGF, Collagen I, c-Jun and phospho-c-Jun, JNK1 and phospho-JNK1 significantly compared with SiO2 + NC group. CONCLUSION: Hsa-miR-379-3p was demonstrated for the first time that could directly target and down-regulate human CTGF gene, and further affect the expression levels of key genes and proteins in Rac1/MLK3/JNK/AP-1/Collagen I cascade reaction.


Asunto(s)
Factor de Crecimiento del Tejido Conjuntivo , MicroARNs , Humanos , Células A549 , Colágeno/metabolismo , Factor de Crecimiento del Tejido Conjuntivo/genética , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , MicroARNs/genética , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo , ARN Mensajero , Dióxido de Silicio/metabolismo , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo
11.
Acta Pharm Sin B ; 13(5): 1828-1846, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36168329

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has been a major health burden in the world. So far, many strategies have been investigated to control the spread of COVID-19, including social distancing, disinfection protocols, vaccines, and antiviral treatments. Despite the significant achievement, due to the constantly emerging new variants, COVID-19 is still a great challenge to the global healthcare system. It is an urgent demand for the development of new therapeutics and technologies for containing the wild spread of SARS-CoV-2. Inhaled administration is useful for the treatment of lung and respiratory diseases, and enables the drugs to reach the site of action directly with benefits of decreased dose, improved safety, and enhanced patient compliance. Nanotechnology has been extensively applied in the prevention and treatment of COVID-19. In this review, the inhaled nanomedicines and antibodies, as well as intranasal nanodrugs, for the prevention and treatment of COVID-19 are summarized.

12.
Int J Biol Macromol ; 223(Pt A): 1485-1494, 2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36395942

RESUMEN

The development of cancer vaccines based on tumor-associated antigens is hurdled by lack of an efficient adjuvant and insufficient efficacy. To improve the efficacy of vaccines, a genetically-engineered method was employed in this work to achieve the codelivery of antigen and adjuvant to enhance immune responses. Trichosanthin is a plant-derived protein that possesses cancer immune stimulation function. A genetically engineered protein vaccine composed of trichosanthin (adjuvant) and legumain domain (a peptidic antigen) was constructed, which was further chemically modified with mannose for targeting dendritic cells (DCs). The method is facile and ready for scaling up for massive production. Such a "two-in-one" vaccine is advantageous for codelivery for augmenting the immune responses. The vaccine inhibited the tumors by triggering a robust cytotoxic T lymphocyte response in the orthotopic-breast-tumor mice. Furthermore, the vaccine was loaded into the temperature-sensitive hydrogel based on Pluronic F127 for implanting use in the post-surgical site. The sustained-released vaccine from the hydrogel inhibited not only the tumor recurrence but also the lung metastases of breast cancer. These findings demonstrated that it was a safe and effective vaccination for breast cancer immunotherapy in a prophylactical and therapeutical manner for remodeling the tumor immune microenvironment and arresting tumor growth.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Tricosantina , Ratones , Animales , Hidrogeles/farmacología , Células Dendríticas , Tricosantina/farmacología , Adyuvantes Inmunológicos/farmacología , Microambiente Tumoral
13.
Ecotoxicol Environ Saf ; 247: 114173, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36326553

RESUMEN

The occupational and environmental health safety of rare earths has attracted considerable attention. In China, the rare earth neodymium oxide (Nd2O3) is extensively refined and utilized. However, the mechanisms of Nd2O3-induced lung injury are elusive. In the present study, we found that exposure of mice to Nd2O3 caused an inflammatory reaction and fibrosis in lung tissues, which was in relation to the Nd2O3-induced higher levels of the lncRNA H19 (H19), tumor necrosis factor receptor 1 (TNFRSF1A), p-p65, and p-IKKß and lower levels of miR-29a-3p. Further, in mouse monocyte macrophage leukemia cells (RAW264.7), Nd2O3 induced an inflammatory reaction, increases of H19 and TNFRSF1A levels, decreases of miR-29a-3p levels, and activation of the nuclear factor (NF)-κB signaling pathway. Further, we established that miR-29a-3p regulates TNFRSF1A expression. Up-regulation of miR-29a-3p and down-regulation of H19 blocked the Nd2O3-induced secretion of TNF-α, MIP-1α, and IL-6; the increases of TNFRSF1A levels; and activation of the NF-κB signaling pathway in RAW264.7 cells. Further, in Nd2O3-treated RAW26.4 cells, H19 inhibited the expression of miR-29a-3p, which targets TNFRSF1A, and activated the NF-κB signaling pathway to enhance the expression of TNF-α, MIP-1α, and IL-6. Moreover, for mice, up-regulation of miR-29a-3p reversed lung tissue inflammation, pulmonary fibrosis, and activation of the NF-κB signaling pathway induced by Nd2O3. In sum, the present investigation shows that H19 via miR-29a-3p is involved in lung inflammation and pulmonary fibrosis induced by Nd2O3, which is a mechanism for the Nd2O3-induced lung inflammatory response and pulmonary fibrosis. This information is useful for development of a biomarker of Nd2O3-induced lung injury.


Asunto(s)
Lesión Pulmonar , MicroARNs , Neumonía , Fibrosis Pulmonar , ARN Largo no Codificante , Animales , Ratones , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , ARN Largo no Codificante/genética , FN-kappa B , Quimiocina CCL3 , Factor de Necrosis Tumoral alfa , Interleucina-6 , Inflamación/inducido químicamente , Inflamación/genética , MicroARNs/genética
14.
Front Psychol ; 13: 985887, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36186339

RESUMEN

The purpose is to improve the teaching quality of Russian spatial prepositions in colleges. This work takes teaching Russian spatial prepositions as an example to study the key technologies in 3D Virtual Simulation (VS) teaching. 3D VS situational teaching is a high-end visual teaching technology. VS situation construction focuses on Human-Computer Interaction (HCI) to explore and present a realistic language teaching scene. Here, the Steady State Visual Evoked Potential (SSVEP) is used to control Brain-Computer Interface (BCI). An SSVEP-BCI system is constructed through the Hybrid Frequency-Phase Modulation (HFPM). The acquisition system can obtain the current SSVEP from the user's brain to know which module the user is watching to complete instructions encoded by the module. Experiments show that the recognition accuracy of the proposed SSVEP-BCI system based on HFPM increases with data length. When the data length is 0.6-s, the Information Transfer Rate (ITR) reaches the highest: 242.21 ± 46.88 bits/min. Therefore, a high-speed BCI character input system based on SSVEP is designed using HFPM. The main contribution of this work is to build a SSVEP-BCI system based on joint frequency phase modulation. It is better than the currently-known brain computer interface character input system, and is of great value to optimize the performance of the virtual simulation situation system for Russian spatial preposition teaching.

15.
Front Pharmacol ; 13: 840440, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35392570

RESUMEN

The hallmarks of cancer include dysregulated metabolism and immune evasion. As a basic way of metabolism, lipid metabolism is reprogrammed for the rapid energy and nutrient supply in the occurrence and development of tumors. Lipid metabolism alterations that occur in the tumor microenvironment (TME) affect the antitumor responses of immune cells and cause immune evasion. Therefore, targeting lipid metabolism in the TME for enhancing the antitumor effect of immune cells is a promising direction for cancer treatment. Cancer nanomedicine has great potential in regulating tumor metabolism and tumor immunity. This review summarizes the nanotechnology-based strategies for lipid metabolism regulation in the TME for enhanced anticancer immune responses.

16.
Acta Pharm Sin B ; 12(7): 3187-3194, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35169535

RESUMEN

The heparin polysaccharide nanoparticles block the interaction between heparan sulfate/S protein and inhibit the infection of both wild-type SARS-CoV-2 pseudovirus and the mutated strains through pulmonary delivery.Image 1.

17.
Front Genet ; 12: 700398, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34349786

RESUMEN

Rare-earth pneumoconiosis (REP) is the main occupational disease of rare earth exposed workers and there is no specific treatment. In this study, we performed high-throughput sequencing on the plasma of nine REP to describe and analyze the expression profiles of long non-coding RNA (lncRNA), micro RNA (miRNA) and mRNA and investigate their regulatory networks. Our results identified a total of 125 lncRNAs, 5 miRNAs, and 82 mRNAs were differentially expressed in the plasma of patients with REP. Furthermore, Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used to analyze the differentially expressed non-coding RNAs (ncRNA). We found the differential expression of ncRNA are mainly related to the response of cells to stimulation, Hedgehog signaling pathway and so on. We also constructed lncRNA-miRNA-mRNA networks to further explore their underlying mechanism and possible relationships in REP. We found that in the competitive endogenous RNA (ceRNA) networks, lncRNA acts as a sponge of miRNA to regulate the target gene. The expression results were verified by qRT-PCR and the protein interaction networks of differentially expressed genes were constructed via the STRING database. OncoLnc online platform was used to do the lung cancer survival analysis among the top five mRNA analyzed by Protein-protein interaction (PPI) network analysis. We found miR-16-2-3p may used as biomarker for REP, because it is closely related to the occurrence and prognosis of REP through inflammatory reaction and in lung squamous cell carcinoma, its expression levels were positively correlated with the overall survival rate of patients.

18.
Biomater Sci ; 8(24): 7166-7176, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33169732

RESUMEN

The tumor microenvironment (TME) and its major component tumor-associated macrophages (TAM) play a pivotal role in the development of non-small cell lung cancer (NSCLC). An epigenetic drug-based combinatory therapeutic strategy was proposed and a deformable liposome system (D-Lipo) was developed for vorinostat and simvastatin codelivery for remodeling the TME. The application of deformable liposomes in systemic cancer drug delivery has been underexplored and its potential in cancer therapy is largely unknown. This work revealed that D-Lipo exhibited an enhanced intratumor infiltration ability. The proposed therapeutic strategy was characterized by a chemo-free regimen and TME remodeling function. D-Lipo efficiently inhibited the growth of the xenografted lung tumor. The anti-tumor mechanisms involved the repolarization of TAM from the M2 to M1 phenotype, anti-angiogenesis, and the consequent TME remodeling. As a result, the amounts of the anti-tumor M1 macrophages and the cytotoxic CD8+ T cells increased, while the amounts of the pro-tumor M2 macrophages and regulatory T cells (Tregs) reduced. It provides a promising avenue for epigenetic drug-based combination therapy for treating solid tumors.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Liposomas , Neoplasias Pulmonares/tratamiento farmacológico , Simvastatina , Microambiente Tumoral , Vorinostat
19.
Toxicol Lett ; 333: 42-48, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32721576

RESUMEN

Silicosis is a type of pneumoconiosis caused by the inhalation of silica dust. It is characterized by inflammation and fibrosis of the lung. Although many studies have reported that crystalline silica-inhalation into the lung initiates the immune response, activating effector cells and triggering the inflammatory cascade with subsequent elaboration of the extracellular matrix and fibrosis, the mechanism of silicosis pathogenesis remains unclear. In the present study, we established a silica inhalation-induced silicosis rat model validated by histological and cytokine analyses. RNA-seq and bioinformatic analyses showed that 600 genes were upregulated and 537 genes were downregulated in the silica-treated group. GO enrichment analysis indicates that these differentially expressed genes are enriched in several biological processes including immune response and organism remodeling. KEGG enrichment analysis showed that 53 enriched pathways were mainly associated with human diseases, immune response, signal transduction, and fibrosis process. Since alternative splicing of pre-mRNAs is also essential for the regulation of gene expression, we identified several alternative pre-mRNA splicing events in the fibrotic process. This study will provide a foundation to understand the molecular mechanism of the pulmonary fibrosis caused by silica.


Asunto(s)
Pulmón/efectos de los fármacos , Fibrosis Pulmonar/genética , Dióxido de Silicio/toxicidad , Silicosis/genética , Transcriptoma/efectos de los fármacos , Empalme Alternativo/efectos de los fármacos , Animales , Citocinas/genética , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Pulmón/patología , Masculino , Fibrosis Pulmonar/inmunología , Ratas , Ratas Sprague-Dawley , Silicosis/inmunología
20.
Wei Sheng Yan Jiu ; 49(2): 242-248, 2020 Mar.
Artículo en Chino | MEDLINE | ID: mdl-32290940

RESUMEN

OBJECTIVE: To understand the exposure levels of polycyclic aromatic hydrocarbons(PAHs) and the expression of interleukin-2(IL-2), interferon-γ(IFN-γ), interleukin-4(IL-4), interleukin-10(IL-10) in peripheral blood of coke oven workers exposed to coke oven emissions(COEs). The other purpose of this study was to understand the performance of IFN-γ and IL-10 epigenetic mechanisms in COEs exposure damage. METHODS: The 85 workers exposed to COEs in a coking plant were randomly selected as the exposure group. The 47 workers who were exposed to non-COEs in the coking plant were used as the control group. The morning urine of the exposure group and the control group were subjected to detection of 1-OHPyr levels with alkaline hydrolysis High-performance liquid chromatography fluorescence, urine creatinine correction. The peripheral venous blood were subjected to detection of the expression of IL-2, IFN-γ, IL-4 and IL-10 with enzyme-linked immunosorbent assay. And methylation levels of IFN-γ and IL-10 were analyzed by time of flight mass spectrometry. RESULTS: The urine 1-hyroxy-pyrene(1-OHPyr) content of coke oven workers was higher than that of the control group(F=12. 446, P<0. 05). The urine 1-OHPyr content of the furnace side and the furnace top were higher than the control group, and the differences were statistically significant. Compared with the control group, serum IL-2 content of coke oven workers decreased(F=14. 774, P<0. 05), and serum IFN-γ content of coke oven workers decreased(F=46. 379, P<0. 05), the serum IL-4 content of coke oven workers increased(F=17. 426, P<0. 05), the serum IL-10 content of coke oven workers increased(F=33. 515, P<0. 05), and the TH1/TH2 ratio of coke oven workers decreased(F=21. 677, P<0. 05). In the exposed group, the level of IFN-γ in the top of the furnace was higher than that in the bottom of the furnace. The difference was statistically significant. The level of IL-10 in the top and bottom of the furnace was lower than that in the furnace. The difference was statistically significant. The IL-10 CpG-11, CpG-15 and mean methylation rates in the exposed group were lower than those in the control group, and the differences were statistically significant. The methylation rate of IFN-γ CpG-5 in the exposed group was higher than that in the control group, and the difference was statistically significant. The urine 1-OHPyr content of coke oven workers was negatively correlated with TH1/TH2 ratio and IFN-γ expression level, and positively correlated with IL-4 and IL-10 levels. The IL-10 CpG-11, CpG-15 methylation rate decreased with increasing urine 1-OHPyr concentration. CONCLUSION: The side and top of the furnace worker exposed to COEs were the key targets for occupational health. The exposure of coke oven workers to COEs affected the expression of immunoregulatory cytokines. The exposure of COEs caused the change of IL-10 methylation rate.


Asunto(s)
Coque , Exposición Profesional/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Citocinas , ADN , Daño del ADN , Humanos , Metilación , Pirenos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...